A Statistical Learning Based System for Fake Website Detection

نویسندگان

  • Ahmed Abbasi
  • Zhu Zhang
  • Hsinchun Chen
چکیده

Existing fake website detection systems are unable to effectively detect fake websites. In this study, we advocate the development of fake website detection systems that employ classification methods grounded in statistical learning theory (SLT). Experimental results reveal that a prototype system developed using SLT-based methods outperforms seven existing fake website detection systems on a test bed encompassing 900 real and fake websites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Fake Websites: The Contribution of Statistical Learning Theory

Fake websites have become increasingly pervasive, generating billions of dollars in fraudulent revenue at the expense of unsuspecting Internet users. The design and appearance of these websites makes it difficult for users to manually identify them as fake. Automated detection systems have emerged as a mechanism for combating fake websites, however most are fairly simplistic in terms of their f...

متن کامل

Detecting Fake Websites Using Swarm Intelligence Mechanism in Human Learning

The internet and its various services have made users to easily communicate with each other. Internet benefits including online business and e-commerce. E-commerce has boosted online sales and online auction types. Despite their many uses and benefits, the internet and their services have various challenges, such as information theft, which challenges the use of these services. Information thef...

متن کامل

Leveraging Website Genre and Structure Information for Fake Website Detection

In this study we assessed the efficacy of using website genre composition and design structure information for fake website detection. A genre tree kernel was proposed that creates a rooted tree from the website file directory structure, and labels the tree’s file nodes with genre information. The genre tree kernel was compared against several benchmark kernel and non-kernel methods that utiliz...

متن کامل

"Liar, Liar Pants on Fire": A New Benchmark Dataset for Fake News Detection

Automatic fake news detection is a challenging problem in deception detection, and it has tremendous real-world political and social impacts. However, statistical approaches to combating fake news has been dramatically limited by the lack of labeled benchmark datasets. In this paper, we present LIAR: a new, publicly available dataset for fake news detection. We collected a decade-long, 12.8K ma...

متن کامل

A comparison of fraud cues and classification methods for fake escrow website detection

The ability to automatically detect fraudulent escrow websites is important in order to alleviate online auction fraud. Despite research on related topics, such as web spam and spoof site detection, fake escrow website categorization has received little attention. The authentic appearance of fake escrow websites makes it difficult for Internet users to differentiate legitimate sites from phonie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1309.7958  شماره 

صفحات  -

تاریخ انتشار 2012